Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.12.21263453

ABSTRACT

Summary The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated as Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly Δ 144 or Δ 141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we found no overrepresentation of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sub-lineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting new variants with higher infectivity are expected to increase.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.07.21255081

ABSTRACT

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, Gamma, emerged in the city of Manaus in late 2020 during a large resurgence of coronavirus disease (COVID-19), and has spread throughout Brazil. The effectiveness of vaccines in settings with widespread Gamma variant transmission has not been reported. Methods We performed a matched test-negative case-control study to estimate the effectiveness of an inactivated vaccine, CoronaVac, in healthcare workers (HCWs) in Manaus, where the Gamma variant accounted for 86% of genotyped SARS-CoV-2 samples at the peak of its epidemic. We performed an early analysis of effectiveness following administration of at least one vaccine dose and an analysis of effectiveness of the two-dose schedule. The primary outcome was symptomatic SARS-CoV-2 infection. Findings For the early at-least-one-dose and two-dose analyses the study population was, respectively, 53,176 and 53,153 HCWs residing in Manaus and aged 18 years or older, with complete information on age, residence, and vaccination status. Among 53,153 HCWs eligible for the two-dose analysis, 47,170 (89%) received at least one dose of CoronaVac and 2,656 individuals (5%) underwent RT-PCR testing from 19 January, 2021 to 13 April, 2021. Of 3,195 RT-PCR tests, 885 (28%) were positive. 393 and 418 case- control pairs were selected for the early and two-dose analyses, respectively, matched on calendar time, age, and neighbourhood. Among those who had received both vaccine doses before the RT-PCR sample collection date, the average time from second dose to sample collection date was 14 days (IQR 7-24). In the early analysis, vaccination with at least one dose was associated with a 0.50-fold reduction (adjusted vaccine effectiveness (VE), 49.6%, 95% CI 11.3 to 71.4) in the odds of symptomatic SARS-CoV-2 infection during the period 14 days or more after receiving the first dose. However, we estimated low effectiveness (adjusted VE 36.8%, 95% CI -54.9 to 74.2) of the two-dose schedule against symptomatic SARS-CoV-2 infection during the period 14 days or more after receiving the second dose. A finding that vaccinated individuals were much more likely to be infected than unvaccinated individuals in the period 0-13 days after first dose (aOR 2.11, 95% CI 1.36-3.27) suggests that unmeasured confounding led to downward bias in the vaccine effectiveness estimate. Interpretation Evidence from this test-negative study of the effectiveness of CoronaVac was mixed, and likely affected by bias in this setting. Administration of at least one vaccine dose showed effectiveness against symptomatic SARS-CoV-2 infection in the setting of epidemic Gamma variant transmission. However, the low estimated effectiveness of the two-dose schedule underscores the need to maintain non-pharmaceutical interventions while vaccination campaigns with CoronaVac are being implemented. Funding Fundação Oswaldo Cruz (Fiocruz); Municipal Health Secretary of Manaus Research in Context Evidence before this study We searched PubMed for articles published from inception of the pandemic until April 3, 2021, with no language restrictions, using the search terms “P.1” AND “vaccine” AND “SARS-CoV-2”. Additionally, we searched for “CoronaVac” AND “SARS-CoV-2”. Early studies have found plasma from convalescent COVID-19 patients and sera from vaccinated individuals have reduced neutralisation of the SARS-CoV-2 variant, Gamma or P.1, compared with strains isolated earlier in the pandemic. Pfizer BNT162b2 mRNA, Oxford-AstraZeneca ChAdOx1, and CoronaVac are the only vaccines for which such data has been published to date. No studies reported effectiveness of any vaccine on reducing the risk of infection or disease among individuals exposed to P.1 or in settings of high P.1 transmission. Added value of this study This study finds that vaccination with CoronaVac was 49.4% (95% CI 13.2 to 71.9) effective at preventing COVID-19 in a setting with likely high prevalence of the Gamma Variant of Concern. However, an analysis of effectiveness by dose was underpowered and failed to find significant effectiveness of the two-dose schedule of CoronaVac (estimated VE 37.1%, 95% CI -53.3 to 74.2). Implications of all the available evidence These findings are suggestive for the effectiveness of CoronaVac in healthcare workers in the setting of widespread P.1 transmission but must be strengthened by observational studies in other settings and populations. Based on this evidence, there is a need to implement sustained non-pharmaceutical interventions even as vaccination campaigns continue.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL